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Abstract

In this paper we study the amplitude Nth-power squeezing of radiation fields in the degenerate Raman
process by using the modified effective Hamiltonian approach recently suggested by us. We found that if
the field is initially in a coherent state it will not get squeezing for any Nth-power; if the field is initially
in a squeezed vacuum, it may get Nth-power squeezing. The time evolution of the field fluctuation was
discussed. Its dependences on power-order N, mean photon number 7, and squeezing angle ¢ are analyzed.

1 Introduction

Squeezed states of radiation fields have been studied considerably in recent years. Besides the normal
squeezing!!l it is also possible to define higher-order squeezing. Hong and Mandell? defined the 2Nth-order
squeezing, and Hillery[® introduced the amplitude squared squeezing. More recently, Zhang et all4l suggested
the amplitude Nth-power squeezing(ANPS), which includes the normal squeezing and the amplituide-squared
squeezing as special cases. All these higher-order squeezing have been shown to be independent nonclas-
sical features of radiation fields!®!. ANPS of radiation fields has been studied in many quantum optics
systems[4~12l,

On the other hand, the degenerate Raman process(DRP) is one of the most interesting two-photon
interactions between atoms and radiation fields, and has been studied intensively[!3=16l, Usually, this process
was studied by the full microscopic Hamiltonian approach(FMHA)!3-1l and the effective Hamiltonian
approach(EHA)!'8). Generally speaking, FMHA gives exact solution, but it may be too complicated to be
used in some situations. Although EHA is simpler than FMHA, it loses a phase factor, it can not be used
to deal with the quantities involving the oft-diagonal elements of the density matrix. To overcome these
shortages we have suggested a modified effective Hamiltonian approach(MEHA)0,

In this paper we use MEHA to study ANPS of radiation fields in DRP.

2 The Degenerate Raman Process(DRP)

The DRP refers to the interaction between a A-type three level atoms and a single mode of a radiation
field(Fig.1).
The modified effective Hamiltonian for DRP is 17]
Hypn = Hpn + Hs (1)

Hgy = /\(l.+(l,(|6 >< gI + lg >< e|) (2)

is the effective Hamiltonian(when the detuning is very large, one can eliminate the upper level adiabatically
and obtain it) and
Hs = —a%a(Bily >< g| + fale >< e]) (3)
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is the part representing the ac Stark shift of atomic levels. §; and (2 are the Stark parameters for levels
|g > and |e >, respectively.
If the initial state for the atom-field system is

x

|¥(0)) = Z 4:[Cy(0)|g,m) + Ce(0) e, n)] 4)

n=0

we can express the state for a later time as

(@) = D aulCy(D)lg,m) + CE(t)le, n)) (5)
n=0

;From the time-dependent Schrodinger equation we can obtain Cy'(t) and CZ(2).
The reduced density matrix for the field can be expressed as

pt) = 3 puw (DM (| (6)
n,n' =0
P (£) = G [CRECT* (2) + CRE)C (1)) (7

Supposing initially the atom is in the state |g), i.e. Cy(0) = 1, and C.(0) = 0, and let g1 = g2 = g for
simplisity, we get
e (T) = utvezp|—i(n — ) T)cos(n — )T ®)

in which T = M. We see that the diagonal elements py, are independent of time and just the photon
distribution function of initial field.

3 The Amplitude Nth-Power Squeezing(ANPS)

The amplitude Nth-power squeezing of a radiation field is defined in terms of the following quantitiesl‘l

Zi(N) = 1(a" +a*Y), Zy(N) = (0" — a*™) ©)
Z1(N) and Z5(N) satisfy the commutation relation and the uncertainty relation
Z4(N), Z2(N)] = 5la", 0] (10)
. . 1
(AZ1(N))*H(AZ(N)?) 2 El(la"',aw])l2 (11)
The field is said to be Nth-power squeezed if
(AZ(N)Y) < 7a™,a*™) (1=1,2) (12)
Here we introduce a parameter named squeezed degree S;(N)
' _ Di(N) L

where C(N) and D;(N) are defined as
C(N) = ([a",a*™)), Dy(N) = 4{(AZi(N))?) = ([a",a*"]) (14)

Then the field is Nth-power squeezed if D;y(N) < 0, (Si(N) < 0). Si(N) = -1 corresponds to 100%
squeezing. In the following section we will study ANPS in DRP. We will consider several kinds of initial
field states.
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4 ANPS in DRP

4.1. For an Initial Coherent State

o0

@) = 3 g, a = niek
n=0
c mEC 4 ——ﬁﬁ’n L
{ln Q Qn = (e _n_")i (15)
then we have
pfzn’ (T) Q“Q”/&L'])[—’I:(TL - T),,)(T - 60)](:08(” - nI)T (16)

We can find

Dy(N) = 4N sin?(NT)sin®[N(T — &)

Do(N) = 42N sin?(NT)cos?[N(T — &) (17)
We see that in a degenerate Raman process the field will not get Nth-power squeezing if it is initially in a

coherent state.

4.2. For an Initial Squeezed Vacuumn

o0
l03q> = Z q2n|2n), Gon = Q?ne”lE
n=y
Iy [(2n)'l 2
n =\ ., 5 - 1
Qe = () 5D (18)
where 7 is the mean photon number and { is the squeezing angle of t;he initial field. Then we have
Pan2n (T) = QonQawerp|—i(n — n')(2T — €)]cos(n — n')2T (19)

We see that only even-photon-number states can be found in a squeezed vacuum. The photon-number
distribution function is
P2n = flon2n = Q‘)nQ‘Zn (20)

For N =o0dd =2M — 1(M = 1,2,3,...) we can find
Cl)y=1

Di(1) = 2{n — [(A + 1)]2cos(2T — €)cos(2T)}
Dy(1) = 2{n + [A(R + 1)]3cos(2T — €)cos(2T)} (21)
C(3) = 3(9a% 4 97 + 2)
Di(3) = 6{n?(5n + 3) — 5[a(7 + 1)]%(:03(6T — 3¢)eos(6T)}
Dy(3) = 6{A%(57 + 3) + 5[A(A + 1)]Fcos(6T — 3¢)cos(6T)} (22)

We can show that [D2(2M — 1)]e=r = [D1(2M — 1)]¢=¢ can be smaller than zero, but [D;(2M — 1)]¢—y =
[D2(2M — 1)]¢=o can not be smaller than zero. This shows that we can have squeezing in Z,(2M — 1)
components for £ = 0 and in Z3(2M — 1) components for £ = m, but we have not squeezing in Z;(2M - 1)
components for £ = 7 and in Zp(2M — 1) components for § = 0.

For N = even = 2M(M =1,2,3,...) we have

C(2) =227 + 1)
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D1(2) = 2a{(3 + 1) + (7 + 1)[3cos(4T — 2¢)cos(4T") — 2cos* (2T — €)cos?(2T)}}
Do(2) = 20{(3R + 1) — (7 + 1)[3cos(4T — 2¢)cos(4T) + 2sin®(2T — £)cos®(2T)]} (23)
C(4) = 24(107° + 1572 + T + 1)
Di(4) = 6a2{(3502 + 307 + 3) + (7 + 1)?[35c0s(8T — 4¢) — Geos* (4T — 2¢)cos*(4T)]}
Da(4) = 6a2{(3572 + 307 + 3) — (i + 1)2[35c0s(8T — 4€) + 6sin®(4T — 2¢)cos*(4T)]} (24)

We can show that [D2(2M)]¢=r = [D2(2M)]¢=o can be smaller than zero, but [D1(2M)|¢=r = [D1(2M)]¢=0
can not be smaller than zero. This shows that we can have squeezing in Z2(2M) components for both £ =0
and ¢ = 7, but we can not get squeezing in Z1(2M) components for £ = 0 and § = 7.

We are also interested in the optimal squeezing.

gl
[S(Wmin = 2{R — [A(n + 1)]2}
pA7S
2n+1
2{n2(5n + 3) ~ 5[a(a + 1))3)
97(7 + 1) + 2
272(51 + 4)
S@)min = ——==—
LSk 10n3 + 15m2 + TR + 1
We see that [S(N)}min — 0 when i < 1, and [S(N)]smin — —1 (100% squeezing) when 72> 1.
To see the features of the field fluctuation more clearly, we have done numerical calculation and drawn
some figures(Fig.2-10). From these figures we see the follows:
1. Generally, the field fluctuation oscillates periodically, and the oscillation frequency is proportional to
N(Fig.2-9).
2. For a given 7, the oscillation amplitude decreases as N increase (Fig.2-5).
3. For a given N, the oscillation amplitude increases as fi increases, but [S(N)]min changes smaller as 71
increases (Fig.6-9). Syin — —1 when 72 > 1(Fig.10).

[5(2)]min =

[3(3) lnu‘n =

(25)

5 Conclusion

In this paper we have studied ANPS of radiation fields in DRP by using MEHA. We found that if the field
is initially in a coherent state it will not get squeezing in any Nth-power; if the field is initially in a squeezed
vacuum, it may get Nth-power squeezing. The relations between the time evolution of the field fluctuation
with N, 71, and £ are discussed.
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Figiure Captions

Fig.1 Schematic diagram of the degenerate A-type three-level atom interaction with a single-mode field.
w: frequency of field; é: atom field detuning.

Fig.2 §) vs T. i=0.1 a: N=1; b: N=3

Fig.3 S1 vs T. i=1.0 a: N=1; Lt N—3

Fig.4 Sy vs T. 1=0.1 a: N=2; b: N=
Fig.5 Sp vs T. i=1.0 a: N=2; b: N=4

Fig.6 S;(1) vs T. a: n=0.1;b: A =1.0;¢: 2 = 5.0
Fig.7 52(2) vs T. a: 7=0.1; b: 2 =1.0;¢: 2 = 5.0
Fig.8 51(3) vs T. a: n=0.1; b: i = 1.0; ¢: 72 = 5.0
Fig.9 S2(4) vs T. a: i=0.1; b: . =1.0; ¢: 7 = 5.0

Fig.10 [S(N)]imin vs 1. a,b,e,d corresponde to N=1,2,3,4 espectively.
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